3.117 \(\int \frac{x}{\log ^3(c (a+b x^2)^p)} \, dx\)

Optimal. Leaf size=114 \[ \frac{\left (a+b x^2\right ) \left (c \left (a+b x^2\right )^p\right )^{-1/p} \text{Ei}\left (\frac{\log \left (c \left (b x^2+a\right )^p\right )}{p}\right )}{4 b p^3}-\frac{a+b x^2}{4 b p^2 \log \left (c \left (a+b x^2\right )^p\right )}-\frac{a+b x^2}{4 b p \log ^2\left (c \left (a+b x^2\right )^p\right )} \]

[Out]

((a + b*x^2)*ExpIntegralEi[Log[c*(a + b*x^2)^p]/p])/(4*b*p^3*(c*(a + b*x^2)^p)^p^(-1)) - (a + b*x^2)/(4*b*p*Lo
g[c*(a + b*x^2)^p]^2) - (a + b*x^2)/(4*b*p^2*Log[c*(a + b*x^2)^p])

________________________________________________________________________________________

Rubi [A]  time = 0.0931416, antiderivative size = 114, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.312, Rules used = {2454, 2389, 2297, 2300, 2178} \[ \frac{\left (a+b x^2\right ) \left (c \left (a+b x^2\right )^p\right )^{-1/p} \text{Ei}\left (\frac{\log \left (c \left (b x^2+a\right )^p\right )}{p}\right )}{4 b p^3}-\frac{a+b x^2}{4 b p^2 \log \left (c \left (a+b x^2\right )^p\right )}-\frac{a+b x^2}{4 b p \log ^2\left (c \left (a+b x^2\right )^p\right )} \]

Antiderivative was successfully verified.

[In]

Int[x/Log[c*(a + b*x^2)^p]^3,x]

[Out]

((a + b*x^2)*ExpIntegralEi[Log[c*(a + b*x^2)^p]/p])/(4*b*p^3*(c*(a + b*x^2)^p)^p^(-1)) - (a + b*x^2)/(4*b*p*Lo
g[c*(a + b*x^2)^p]^2) - (a + b*x^2)/(4*b*p^2*Log[c*(a + b*x^2)^p])

Rule 2454

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rule 2389

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rule 2297

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[(x*(a + b*Log[c*x^n])^(p + 1))/(b*n*(p + 1))
, x] - Dist[1/(b*n*(p + 1)), Int[(a + b*Log[c*x^n])^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] &&
 IntegerQ[2*p]

Rule 2300

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Dist[x/(n*(c*x^n)^(1/n)), Subst[Int[E^(x/n)*(a +
b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rubi steps

\begin{align*} \int \frac{x}{\log ^3\left (c \left (a+b x^2\right )^p\right )} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{\log ^3\left (c (a+b x)^p\right )} \, dx,x,x^2\right )\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{\log ^3\left (c x^p\right )} \, dx,x,a+b x^2\right )}{2 b}\\ &=-\frac{a+b x^2}{4 b p \log ^2\left (c \left (a+b x^2\right )^p\right )}+\frac{\operatorname{Subst}\left (\int \frac{1}{\log ^2\left (c x^p\right )} \, dx,x,a+b x^2\right )}{4 b p}\\ &=-\frac{a+b x^2}{4 b p \log ^2\left (c \left (a+b x^2\right )^p\right )}-\frac{a+b x^2}{4 b p^2 \log \left (c \left (a+b x^2\right )^p\right )}+\frac{\operatorname{Subst}\left (\int \frac{1}{\log \left (c x^p\right )} \, dx,x,a+b x^2\right )}{4 b p^2}\\ &=-\frac{a+b x^2}{4 b p \log ^2\left (c \left (a+b x^2\right )^p\right )}-\frac{a+b x^2}{4 b p^2 \log \left (c \left (a+b x^2\right )^p\right )}+\frac{\left (\left (a+b x^2\right ) \left (c \left (a+b x^2\right )^p\right )^{-1/p}\right ) \operatorname{Subst}\left (\int \frac{e^{\frac{x}{p}}}{x} \, dx,x,\log \left (c \left (a+b x^2\right )^p\right )\right )}{4 b p^3}\\ &=\frac{\left (a+b x^2\right ) \left (c \left (a+b x^2\right )^p\right )^{-1/p} \text{Ei}\left (\frac{\log \left (c \left (a+b x^2\right )^p\right )}{p}\right )}{4 b p^3}-\frac{a+b x^2}{4 b p \log ^2\left (c \left (a+b x^2\right )^p\right )}-\frac{a+b x^2}{4 b p^2 \log \left (c \left (a+b x^2\right )^p\right )}\\ \end{align*}

Mathematica [A]  time = 0.0543933, size = 113, normalized size = 0.99 \[ -\frac{\left (a+b x^2\right ) \left (c \left (a+b x^2\right )^p\right )^{-1/p} \left (p \left (c \left (a+b x^2\right )^p\right )^{\frac{1}{p}} \left (\log \left (c \left (a+b x^2\right )^p\right )+p\right )-\log ^2\left (c \left (a+b x^2\right )^p\right ) \text{Ei}\left (\frac{\log \left (c \left (b x^2+a\right )^p\right )}{p}\right )\right )}{4 b p^3 \log ^2\left (c \left (a+b x^2\right )^p\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[x/Log[c*(a + b*x^2)^p]^3,x]

[Out]

-((a + b*x^2)*(-(ExpIntegralEi[Log[c*(a + b*x^2)^p]/p]*Log[c*(a + b*x^2)^p]^2) + p*(c*(a + b*x^2)^p)^p^(-1)*(p
 + Log[c*(a + b*x^2)^p])))/(4*b*p^3*(c*(a + b*x^2)^p)^p^(-1)*Log[c*(a + b*x^2)^p]^2)

________________________________________________________________________________________

Maple [C]  time = 1.2, size = 761, normalized size = 6.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/ln(c*(b*x^2+a)^p)^3,x)

[Out]

-1/2*(I*Pi*b*x^2*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)^2-I*Pi*b*x^2*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)
^p)*csgn(I*c)-I*Pi*b*x^2*csgn(I*c*(b*x^2+a)^p)^3+I*Pi*b*x^2*csgn(I*c*(b*x^2+a)^p)^2*csgn(I*c)+I*Pi*a*csgn(I*(b
*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)^2-I*Pi*a*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)*csgn(I*c)-I*Pi*a*csgn(I*c*
(b*x^2+a)^p)^3+I*Pi*a*csgn(I*c*(b*x^2+a)^p)^2*csgn(I*c)+2*ln(c)*b*x^2+2*b*x^2*ln((b*x^2+a)^p)+2*ln(c)*a+2*a*ln
((b*x^2+a)^p)+2*x^2*p*b+2*a*p)/p^2/(2*ln(c)+2*ln((b*x^2+a)^p)+I*Pi*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)^2
-I*Pi*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)*csgn(I*c)-I*Pi*csgn(I*c*(b*x^2+a)^p)^3+I*Pi*csgn(I*c*(b*x^2+a)
^p)^2*csgn(I*c))^2/b-1/4/p^3/b*Ei(1,-ln(b*x^2+a)-1/2*(I*Pi*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)^2-I*Pi*cs
gn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)*csgn(I*c)-I*Pi*csgn(I*c*(b*x^2+a)^p)^3+I*Pi*csgn(I*c*(b*x^2+a)^p)^2*cs
gn(I*c)+2*ln(c)+2*ln((b*x^2+a)^p)-2*p*ln(b*x^2+a))/p)*exp(-1/2*(I*Pi*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)
^2-I*Pi*csgn(I*(b*x^2+a)^p)*csgn(I*c*(b*x^2+a)^p)*csgn(I*c)-I*Pi*csgn(I*c*(b*x^2+a)^p)^3+I*Pi*csgn(I*c*(b*x^2+
a)^p)^2*csgn(I*c)+2*ln(c)+2*ln((b*x^2+a)^p)-2*p*ln(b*x^2+a))/p)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{b{\left (p + \log \left (c\right )\right )} x^{2} + a{\left (p + \log \left (c\right )\right )} +{\left (b x^{2} + a\right )} \log \left ({\left (b x^{2} + a\right )}^{p}\right )}{4 \,{\left (b p^{2} \log \left ({\left (b x^{2} + a\right )}^{p}\right )^{2} + 2 \, b p^{2} \log \left ({\left (b x^{2} + a\right )}^{p}\right ) \log \left (c\right ) + b p^{2} \log \left (c\right )^{2}\right )}} + \int \frac{x}{2 \,{\left (p^{2} \log \left ({\left (b x^{2} + a\right )}^{p}\right ) + p^{2} \log \left (c\right )\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/log(c*(b*x^2+a)^p)^3,x, algorithm="maxima")

[Out]

-1/4*(b*(p + log(c))*x^2 + a*(p + log(c)) + (b*x^2 + a)*log((b*x^2 + a)^p))/(b*p^2*log((b*x^2 + a)^p)^2 + 2*b*
p^2*log((b*x^2 + a)^p)*log(c) + b*p^2*log(c)^2) + integrate(1/2*x/(p^2*log((b*x^2 + a)^p) + p^2*log(c)), x)

________________________________________________________________________________________

Fricas [A]  time = 2.25631, size = 378, normalized size = 3.32 \begin{align*} -\frac{{\left (b p^{2} x^{2} + a p^{2} +{\left (b p^{2} x^{2} + a p^{2}\right )} \log \left (b x^{2} + a\right ) +{\left (b p x^{2} + a p\right )} \log \left (c\right )\right )} c^{\left (\frac{1}{p}\right )} -{\left (p^{2} \log \left (b x^{2} + a\right )^{2} + 2 \, p \log \left (b x^{2} + a\right ) \log \left (c\right ) + \log \left (c\right )^{2}\right )} \logintegral \left ({\left (b x^{2} + a\right )} c^{\left (\frac{1}{p}\right )}\right )}{4 \,{\left (b p^{5} \log \left (b x^{2} + a\right )^{2} + 2 \, b p^{4} \log \left (b x^{2} + a\right ) \log \left (c\right ) + b p^{3} \log \left (c\right )^{2}\right )} c^{\left (\frac{1}{p}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/log(c*(b*x^2+a)^p)^3,x, algorithm="fricas")

[Out]

-1/4*((b*p^2*x^2 + a*p^2 + (b*p^2*x^2 + a*p^2)*log(b*x^2 + a) + (b*p*x^2 + a*p)*log(c))*c^(1/p) - (p^2*log(b*x
^2 + a)^2 + 2*p*log(b*x^2 + a)*log(c) + log(c)^2)*log_integral((b*x^2 + a)*c^(1/p)))/((b*p^5*log(b*x^2 + a)^2
+ 2*b*p^4*log(b*x^2 + a)*log(c) + b*p^3*log(c)^2)*c^(1/p))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\log{\left (c \left (a + b x^{2}\right )^{p} \right )}^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/ln(c*(b*x**2+a)**p)**3,x)

[Out]

Integral(x/log(c*(a + b*x**2)**p)**3, x)

________________________________________________________________________________________

Giac [B]  time = 1.28209, size = 548, normalized size = 4.81 \begin{align*} -\frac{{\left (b x^{2} + a\right )} p^{2} \log \left (b x^{2} + a\right )}{4 \,{\left (b p^{5} \log \left (b x^{2} + a\right )^{2} + 2 \, b p^{4} \log \left (b x^{2} + a\right ) \log \left (c\right ) + b p^{3} \log \left (c\right )^{2}\right )}} + \frac{p^{2}{\rm Ei}\left (\frac{\log \left (c\right )}{p} + \log \left (b x^{2} + a\right )\right ) \log \left (b x^{2} + a\right )^{2}}{4 \,{\left (b p^{5} \log \left (b x^{2} + a\right )^{2} + 2 \, b p^{4} \log \left (b x^{2} + a\right ) \log \left (c\right ) + b p^{3} \log \left (c\right )^{2}\right )} c^{\left (\frac{1}{p}\right )}} - \frac{{\left (b x^{2} + a\right )} p^{2}}{4 \,{\left (b p^{5} \log \left (b x^{2} + a\right )^{2} + 2 \, b p^{4} \log \left (b x^{2} + a\right ) \log \left (c\right ) + b p^{3} \log \left (c\right )^{2}\right )}} - \frac{{\left (b x^{2} + a\right )} p \log \left (c\right )}{4 \,{\left (b p^{5} \log \left (b x^{2} + a\right )^{2} + 2 \, b p^{4} \log \left (b x^{2} + a\right ) \log \left (c\right ) + b p^{3} \log \left (c\right )^{2}\right )}} + \frac{p{\rm Ei}\left (\frac{\log \left (c\right )}{p} + \log \left (b x^{2} + a\right )\right ) \log \left (b x^{2} + a\right ) \log \left (c\right )}{2 \,{\left (b p^{5} \log \left (b x^{2} + a\right )^{2} + 2 \, b p^{4} \log \left (b x^{2} + a\right ) \log \left (c\right ) + b p^{3} \log \left (c\right )^{2}\right )} c^{\left (\frac{1}{p}\right )}} + \frac{{\rm Ei}\left (\frac{\log \left (c\right )}{p} + \log \left (b x^{2} + a\right )\right ) \log \left (c\right )^{2}}{4 \,{\left (b p^{5} \log \left (b x^{2} + a\right )^{2} + 2 \, b p^{4} \log \left (b x^{2} + a\right ) \log \left (c\right ) + b p^{3} \log \left (c\right )^{2}\right )} c^{\left (\frac{1}{p}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/log(c*(b*x^2+a)^p)^3,x, algorithm="giac")

[Out]

-1/4*(b*x^2 + a)*p^2*log(b*x^2 + a)/(b*p^5*log(b*x^2 + a)^2 + 2*b*p^4*log(b*x^2 + a)*log(c) + b*p^3*log(c)^2)
+ 1/4*p^2*Ei(log(c)/p + log(b*x^2 + a))*log(b*x^2 + a)^2/((b*p^5*log(b*x^2 + a)^2 + 2*b*p^4*log(b*x^2 + a)*log
(c) + b*p^3*log(c)^2)*c^(1/p)) - 1/4*(b*x^2 + a)*p^2/(b*p^5*log(b*x^2 + a)^2 + 2*b*p^4*log(b*x^2 + a)*log(c) +
 b*p^3*log(c)^2) - 1/4*(b*x^2 + a)*p*log(c)/(b*p^5*log(b*x^2 + a)^2 + 2*b*p^4*log(b*x^2 + a)*log(c) + b*p^3*lo
g(c)^2) + 1/2*p*Ei(log(c)/p + log(b*x^2 + a))*log(b*x^2 + a)*log(c)/((b*p^5*log(b*x^2 + a)^2 + 2*b*p^4*log(b*x
^2 + a)*log(c) + b*p^3*log(c)^2)*c^(1/p)) + 1/4*Ei(log(c)/p + log(b*x^2 + a))*log(c)^2/((b*p^5*log(b*x^2 + a)^
2 + 2*b*p^4*log(b*x^2 + a)*log(c) + b*p^3*log(c)^2)*c^(1/p))